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ABSTRACT

Several factors influenced HIMransmission from pregnant to Mother to child(MTCTgcause of the not use
ARV-prophylaxis at the time of onset and beforrth of neonatal baby, prolong breast feeding , gotéal absorption an
high RNA Plasma viral load , drug induced toxicity; illndssyer CD4 count, WH-Clinical stage IV, Opportunisti
infection of pregnant women. Present study aims to firandom valk on diseases free groups, free probabi and
large deviation of entropy mathematical modelsHIV, to reduce the large data matrices among HIV intectaldren
and pregnant women with or without receiving ARV Prophylaxiglsidos- NVP befoe and onset of birth of neona
baby.The model was clearly demonstrated the new born child shmagerwent the HIV testing) at differertenval time,
the probability were expected to meet the P (n, mtyopy deviation modeuses data coverage, dey and Correlation to

determine the reduced dimension.
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INTRODUCTION

Methods in HIV MTCT Epidemiology typically involve a set of mathematical egsions or equations that ¢
to capture th@ssence of processes and phenomena for characterizB/tHransmission. A mathematical model seek
uncover and formalize the underlying mechanism or lahat“€xplain the observed phenomena of disemspsmissiol
from mother to child (MTCT).The rpsent study aims, how to reduce the large data matamong HIV infecte
children’s through random walk on free groups and free prabeahilhen the matrices are asynmptdsicadrmal and fre«
b) Application of entropy in large deviation among MT—HIV transmission.

METHODS

Model Formulation: In MTCT HIV transmission ,large variables has generated anspective study at fixe
period of time ,we have correlate the variables betweeitali,|laboratory and biological pararmetsithout transforme:
scale, correlation wasuttuated ,in which we have to analyze h-dimensional data by looking at the Eigen value

more precisely single value( or of random) .Let us waesickered the correlation matrix 50)X =" children’s
were HIV tested at”j interval (the interval period j = tested @1weeks,6weeketRa;24 wveeks,36weeks,50wet
1<i<50, Kj<5 and note that norm one veci* ,which maximize the variance number is the first

principle component and the vector maximizing the variance subject to normalization amthogonally tou* is the
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second and so on .The is the approximately the average of five times HIgttenda* is approximately the difference

between the averages of the first two and last threanesso on.

The stability of the principle component under random flugnain the dataXl-]-. Wishart and R.A. Fisher

studied the distribution of the principle component when the enmigp data matrix X with i.i.d".Gaussian

considered the empirical distribution of the whole coitectof singular values of such matrices, i.e. showed

thatP~1{# eigen value < nt} an absolutely continious functions.G (), when n and =

asymptotically increases with infinity.

Such thats — ¥ > 0,let H be anxn real symmetrical matrix with i.i.d Gaussian I@l,z), entries

.we consider the matrix familyff,, as a non-commutative random variable with the expectafipH,,) =

1 1
;2?2‘{““"5 E (Hm-i),;E(tr, H,), where E is the classical expectations and alsdfat, (H,*) =1.

Theorem (1):

1 2m
2m
(HF™) » prourr) ( m ),Catalan numbers ,asn

T oo which are the 2mth moments of the semicircle distribution density w: w(x)

= (2n) 14 — x»)™Y) for |x| < 2 and = 0 other wise.

Proof: Real symmetrical matrices, dropping the Gaussigomption .Let H bexn random matrix with i.i.d N

(0, 1) entries with finite moments of all orders, andAe{H), A, (H), ... ... An(H) be the Eigen values in increasing

order and consider the random HIV infection meas;cllir%{%(/ll(H)) + 6(/12 (H)) + e +8(/1n(H))]

As the empirical Eigen value distribution of H .its esta¢ion valueuy = %]E(Z;Ll 61 (A,-(H))) called the
mean Eigen value distribution of H and it is easy to find fost™ 5 (x)dx = %[Etr(Hm) = 7,(H™). Theorem (2):

1
Let {H,,} be independent real symmetric matrix with finite moments suah[E}(Hn_i]-) =0 andIE(H,Z,’l-]-) == for

1 <i < j < n.if furthermore,

k
Supi<icjcnE|Hnglk = 0 (n_5> for Eachk € N asn — o,

Proof: ity the mean Eigen value distribution of H tends to the semilediaw .the way of interpreting result was
{H,,} is a family of non —co-commutative random variable with aiertdistribution family{¢,,} (Positive linear

functional on ther —algebra generated by H ang,, converges to the semicircle law and weak *-topology.
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HIV Random Walk on Diseases Free Groups and Free Probdity Model

A diseases free groups, With n generato}q &1, .... gy in the set of all individual children with these n

population, Consider a random walk on Fn which starts frauhit and one step in the move from the group elerggnt

to with probability(2n™1) it h € {gl'g,l’ . gl } tthen the probability of the return unit in m

steps in the form of

1
(2n)m

P(n.m) = ((LgVH,LgVL v Lgit o+ Lgy, . Lgpt )m 80,0, ),

Where we have observed thatlip(G), g — Lg is a unitary representation given by
(Lg, &)(gH =¢&(g 1, g") for & € 12(G)and 8, Stands for the characteristic functions of the elegent
p(n,m) =0if mis odd and

n= disease free, m=infected odd

p(n,2m) = (2n)~2™ n‘m((Z?g‘ﬁgf,f Xn,j)2m, Se, e), Where 2m= odd (HIV infected at different intervals.

Xn) = \/ii (Lg.i + Lgl._l), asymptotic behavior @ — 00;

1 1 2m . .
p(n,m) = G (ﬁ) ( m ) Compared with Theorem (1), It was propounded by théralelimit theorem for the

array of HIV testing done at different intervals.

(an(i I week)anZ(II Week)anB(III Week test done), ==+ =+ -Xn(50weeks)) ,of non computing variables of HIV .

Than the converges in distribution to the semicircle law

@ (x) = (X8.6,), than X, ; , Satisfy the following property,
@(P1Xy,,i(1)) P2Xp,i(2) o oo . PE(Xy, i(k)) = 0

For all polynomialPy, P, ... ... Py such thatp (P1X,,,i(j))=0 andi(1) # i(2) ........# i(k),non commuting

random variables is called diseases free, Successive raradi@bles was independent in nature.

The model was clearly determined the new born childishenderwent the HIV testing at different interval time,

the probability were expected to meet the P(n,m) .
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ENTROPY IN HIV
Modal Formulation

We considered the classical case.§{Bt¢2 .... be independent standard real Gaussian random variabletabdbe an

open set in the spadd(RR) of probability measures & (with weak *topology),standard Gaussian meastir@sG,then

n
1
prob| the HIV testing measures at dif ferent intervalgz 6;(§;) €G | = exp (—n(v,G)
=1

Where G” is the subset prohibition measutgs;andom variable

WhereC(v, G) = inf{I(u): u € G} andI(u) is the rate of HIV testing done or relative entropy.
1 1

I(p) = —fp(x) logp(x)dx +Ef x2u(dx) + > log 2x

— [ p(x) log p(x)dx +% ........... Entropy function

%fxz,u(dx) +% log 2x----nnmmmmnn- Moments.

And u(dx) = p(x)dx.The first part of the is the entropy or the Boltzmann-Gibbsogyt
S(w) = — [ p(x)logp(x)dx. The above theorem says that the probabilitheflarge deviation from Gaussianity

decreases exponentially with n, and the co efficient muitighy in the exponent is an infimum of an expression which is

essentially the entropy.

Large deviation for HIV testing among new born baby &stant that “
Prob {% 2j06(4 (Hp) € G} ~ e " C(@9). Each entropy is i.i.d ar%l real matrix, where G is an open 8&{R) not

containing the semi-circle law and C(w, G) = Inf{I(u)/ueG}with

1 1
I(p) = _Eff log|x — ylu(dx)u(dy) + Zf x?u(dx) + constant

In analogy with the classical case,

identify ST (u) = —%ff log|x — ylu(dx)u(dy)as the HIV non tested free entropy. The important point was
noted that the probability that the empirical Eigen vatliigribution was different from the semicircle law aletreases
sharply with increase of sample size ,i.eess (—n?C (w, G) in contrast to the classical case in which thebability

for” large deviation” goes likexp (—n?C (v, G)
RESULTS & DISCUSSIONS

HIV —MTCT has becomes increasingly NACO(2011), becaughehot use ARV-prophylaxis at the time of
onset and before birth of neonatal baby, prolong breast feeditagental absorption and high viral load of pregnant

women, drug induced toxicity; illness, lower CD4 count,éicmain charecristic- parameters has increB8€T€T rate.

As a simple model, consider the linear model in the fofny = H, + n, where x is K-input variable ,children undergo
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HIVtestingatdifferent
intervals y is the N — dimentional output vector,n is the N —

out put resut Reactive or Non reactivemodeling,

Orthogonally symmetric Gaussian HIV transmission ands Hhe complex valued randoMXK matrix .We
considered K is the number of transmitting childrdmlevN is the same for receiving infection from motbate. K=~
of not HIV reactive and N = the HIV reactive/infection.In the first H is the propagation co efficient for eac
reactive and non reactive pair of result while secosé ¢caach entropy H depend on the transmission /nehtission co
efficient ,andK = nyJ,n = nR; with ny andng the test done and test not done algorithms received frddrertis and
J and g the number of pregnant women ,who are received not cecgiivgle dose of NVP at time baby birth itself . Of
course ,the simplest case is one where the entries H.drevas realistically true and correct ,they are iriat.Set for

NXN positive matrix A, the normalized distribution furmt asF) (x) = %Z?’:lX(Aj(A) < x) so thatFy, (x) —

N(X) = KF},;,(x) — N(X),where is the Heavy side function This is because the non-zgenBialues of HH* and

h* H are identical in nature .

CONCLUSIONS

Entropy and HIV random walk on diseases free groupsfraedprobability model method that can be used for
dimension Reduction of high dimensional data. This methosl ds& coverage, density and Correlation to determine the
reduced dimension that has good model .While this method doesictoiafe the data, whose results are easy to interpret

and more accuracy.
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